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Abstract

In this paper we compare foraging strategies that might be used by predators seeking
prey in a patchy environment. The strategies differ in the extent to which predators
aggregate in response to prey density. The approach to the comparison is suggested by
the idea of evolutionarily stable strategies. A strategy is said to be evolutionarily stable if
it cannot be invaded by another strategy. Thus we examine scenarios where a small
number of individuals using one strategy are introduced into a situation where a large
number of individuals using the other strategy are already present. However, our for-
aging models do not explicitly incorporate predator population dynamics, so we use net
energy uptake as a surrogate for reproductive fitness. In cases where all of the patches
visited by predators sustain prey populations, we find that for any pair of strategies one
of them will have a higher net energy uptake than the other whether it is the resident or
the introduced strain. However, which one is higher will typically depend on the total
predator population, which is determined by the resident strain. If the predators leave
prey densities high, the more aggregative strain will have the advantage. If the predators
reduce prey densities to low levels the less aggregative strain will have the advantage. In
cases where one strain of predators aggregates in response to prey density and the other
does not, then there might be patches which do not contain prey but do contain (non-
aggregating) predators. In those cases, there is the possibility that whichever strategy is
used by the introduced strain will yield a higher energy uptake than that used by the
resident strain. This suggests that if some patches are empty of prey then aggregative
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and non-aggregative strategies may be able to coexist. © 1999 Elsevier Science Inc. All
rights reserved.
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1. Introduction

In this paper we compare some foraging strategies which might be used by
predators seeking prey in a patchy environment. The prototype for our study is
the ladybird beetle-aphid-fireweed community which arose in the aftermath of
the explosion of Mt. St. Helens. Consequently, the strategies for comparison
are based on behavioral mechanisms (random search, area restricted search),
known to be employed by beetles [1]. The strategies differ in the extent to which
predators aggregate in response to prey density. To compare strategies we
examine scenarios where a small number of individuals using one strategy are
introduced into a system where a large number of individuals using the other
strategy are already resident. The comparison is then made by computing the
net rates of energy uptake of the resident and introduced strains. Our approach
to the comparison is suggested by Maynard Smith’s definition of an evolu-
tionarily stable strategy ([2], pp. 10-11) and related ideas in the mathematical
theory of persistence (or permanence) in dynamical systems [3,4]. According to
Maynard Smith’s original definition, an evolutionarily stable strategy is one
which is uninvadable by any other available strategy. In the other direction,
results from persistence theory give a rigorous formulation of the ecological
maxim ‘invasibility implies coexistence’; see [4]. However, we do not use the
idea of invasibility directly, because that requires a model which incorporates
predator population dynamics. The model we use to describe the foraging
strategies does not include predator population dynamics. It is based solely on
the searching behavior of the predators. We assume that some fixed number of
predators are resident in the system and then compare different foraging
strategies under that assumption. In principle we could construct a true pop-
ulation dynamical model from the foraging model, but the foraging model is
already complex enough that its analysis is somewhat complicated. Hence we
examine scenarios of the sort which would occur in an actual invasion, where a
few individuals using one strategy are introduced into a system where many
individuals using the other strategy are already resident. However, we do not
directly miodel the population dynamics of the competing strains using the
different strategies. Instead, we follow a common biological custom and use the
net rate of energy uptake per unit time as a surrogate for reproductive fitness;
see [5]. We also describe how predator population dynamics could be incor-
porated into the models, but do not give a detailed analysis.



R.S. Canitrell, C. Cosner [ Mathematical Biosciences 160 (1999 ) 25-46 27

The models we employ are extensions and generalizations of an established
model for predator-prey systems at multiple scales [6]. The work described in
Ref. [6] was initially motivated by field observations by Kareiva and his col-
laborators [7] on the fireweed-aphid-ladybug beetle system which emerged
from.the ruins of Mt. St. Helens following its 1980 eruption. The differences in
the temporal and spatial scales for movement and reproduction in the prey
(aphid) and predator (ladybird beetle) species meant that conventional mod-
elling approaches were unsuitable. For instance, the host plants were config-
ured into patches upon which populations of the prey resided. The prey could
move freely throughout any patch via diffusion, but were prevented from
moving from patch to patch by their minute dispersal scale and the harshness
of the landscape between patches. In contrast, the predators had a sufficiently
long dispersal scale spatially so as to regard the environment as a collection of
patches among which they could immigrate and emigrate at will by flight.
Additionally, the time scale for predator dispersal and foraging was very short
in comparison with the reproductive time scale of the prey which in turn was
somewhat short in comparison with the reproductive time scale of the preda-
tor. As a consequence of these considerations, we modelled the system using a
hybrid which coupled a diffusion equation for the prey dispersal and popula-
tion dynamics on each patch with an immigration-emigration model for pre-
dator dispersal and foraging among the patches. No population dynamics for
the predator were introduced, because we were mainly interested in examining
how the different dispersal patterns of the predators affected the spatial dis-
tribution of the prey. '

To summarize briefly, our models in Ref. [6] envision the environment as a
collection of patches, some of which are inhabited by a resource or prey species
that views each patch as a continuum through which it diffuses and reproduces.
On and surrounding the patches initially is a consumer or predator species that
moves freely among the patches by flight. A predator immigrates to a patch
and forages and then emigrates to some other patch. This activity occurs on a
time scale short enough in comparison to the reproductive scale of the prey
species that the predator population quickly reaches an ‘equilibrium’ on the
patches and in the air surrounding them in terms of the present density of the
prey population. The system is then left undisturbed so as to come to a steady-
state in the prey density. Because of the disparity in time scales between pre-
dators and prey we followed the derivation of resource competition models in
[8,9] and assumed that the predator population on a patch equilibrates im-
mediately in response to the current prey population on that patch. Substi-
tuting the resulting predator ‘pseudoequilibria’ into the predation terms of the
diffusion equations for the prey led to a system of non-local reaction-diffusion
equations the asymptotics of which we then analyzed.

The models in [6] were informed in large part by two sets of assumptions
regarding the predators. First, the total predator population could be
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regarded as finite or as essentially unlimited, a distinction which controlled
whether prey population dynamics on one patch were linked to prey popu-
lation dynamics on the other patches. For our present purposes we will al-
ways assume a finite predator population, because we want to calculate per
capita energy uptake rates. It turns out that the size of the predator popu-
lation affects the average prey density, which in turn affects which strategies
are more advantageous. Second, we assumed that the predator species may or
may not aggregate in response to average prey density by using area restricted
search [1,10,11]. Such aggregative behavior was modelled by letting the em-
igration rate from host plant patches be inversely proportional to average
prey density. Additionally, the predators were always assumed to be sensitive
to the geometry of the environment, the canonical expression of which was an
emigration rate directly proportional to the perimeter-to-area ratio of a
habitat patch. In order to focus on the two predator characteristics just de-
scribed, predator immigration rates and predator functional response to prey
kept the same form throughout our modelling and analysis. (See [6] for
further detail.)

The idea of using an emigration rate which is inversely proportional to prey
density to model aggregation by area restricted search was introduced in Ref.
[1]. The mechanism is simple: if predators quickly leave patches without prey
and continue searching but stay for a long time on patches where there are
prey, then soon there will be a concentration of predators on the patches where

_prey are present.
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are available to the predators in our system, namely ladybird beetles. We do
not attempt to find a strategy which is globally optimal in the sense of
yielding the maximum possible net energy uptake of any conceivable strategy.
That is because not all conceivable strategies are feasible for beetles. For
example, the ideal free distribution described in [12] is widely used to model
the spatial distribution of consumers. However, the ideal free distribution
requires that individuals select the best habitat currently available. Such a
selection requires an assessment of the quality of available habitats. That is
plausible when the species can sample and remember, as in the case of large
vertebrates, but does not appear to be consistent with the observed behavior
of beetles [1].

Our purpose here is to view aggregation through area restricted search as a
foraging strategy. To this end, we extend the model of [6] by allowing the
emigration rate to be inversely proportional to a power (between 0 and 1) of
average prey density. (We choose this form because it is the simplest one that .,
captures the phenomenon.) In so doing we obtain a continuum of aggregative
behaviors or foraging strategies starting with an emigration rate that is inde-
pendent of average prey density and increasing along a scale of increasing
sensitivity to prey density to an emigration rate inversely proportional to
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average prey density. We then compute the net energy uptake rates for a res-
ident strain and for an introduced strain using a different strategy and compare
them. We expect that the strain with the higher net energy uptake would have a
reproductive advantage over the other strain and hence an actual invasion
would succeed or fail depending on whether the advantage lay with the resident
or the introduced strain. However, we do not attempt to model the dynamics of
an invasion per se. _

Our analysis is as follows. In Section 2 we formulate expressions for.the net
per capita energy uptake for the introduced and resident predator strains,
making use of the extended version of the model in Ref. [6]. The mathematical
tractability of these expressions is greatly enhanced by the simplifying as-
sumption that all host plant patches in our system are the same size and shape,
although we do not assume that all patches harbor aphid populations. In
Section 3, we show how comparisons of net per capita energy uptakes depend
on the value of the average prey density. We are thus led to a qualitative and
quantitative analysis of this dependence which we perform in Section 4. We
conclude in Section 5 with a description of biological conclusions supported by
the mathematical analysis.

2. The models

As noted above, the models in Ref. [6] were classified according to two sets
of assumptions about the predators in the system. First, the predator supply
could be regarded as either (i) effectively unlimited because of a nearby source
population or (ii) finite, though possibly proportional to the total area or
number of host plant patches. Second, predator emigration from a host plant
patch could be taken (i) to depend solely on the geometric characteristics of the
patch or (ii) to be inversely proportional to average prey density on the patch.
Having an unlimited supply of predators does not allow computation of a net
per capita energy uptake. Consequently, in this article, we shall assume
-throughout that the predator supply is finite, sometimes with the additional
assumption that it is proportional to total patch area or number of patches.
Our principal purpose here is to compare foraging strategies of different strains
of predators, where strategies are differentiated according to predator aggre-
gation. The strategies were modeled in terms of area restricted search. The level
of predator aggregation is reflected by the dependence of the emigration rate
from the host plant patches on average prey density. We want a more robust
treatment than can be provided by just considering the two alternatives in
emigration regimes examined in Ref. [6]. As a result, we make a more general
assumption about predator emigration that includes the two regimes from [6]
as special cases. More specifically, we consider a family E, of emlgratlon rates,

where p € [0,1] and
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In formula (1), £ is the linear dimension of a square patch, while ¥ is the total
prey population in the patch (and hence V /£ is the average prey density).
Consequently, the emigration rate is inversely proportional to the uth power of
average prey density, which for y > 0 represents a crude form of area restricted
search, and is directly proportional to the perimeter to area ratio of the patch.
In Eq. (1), the parameter y indicates the sensitivity of a predator’s emigration
rate to aggregation, and ranges from emigration that depends only on geo-
metric factors at i = 0 to having an emigration rate inversely proportional to
average prey density at u = 1. For any fixed p, the constant of proportionality
e, may be tuned to accelerate or retard the emigration rate without changing its
essential sensitivity to aggregation. (Notice that the units of e, necessarily
depend on 1) As p increases, the predator’s tendency to leave a patch with a
low average prey density becomes more pronounced while its tendency to leave
a patch with a high average prey density becomes less pronounced.

One may well ask why we favor (1) as a means of interpolating between the
alternatives for emigration rates considered in [6]. Certainly, there are other
possibilities. However, the power law used in (1) provides the simplest math-
ematical formulation of E, so that the tendency of a predator strain to ag-
gregate in response to average prey density becomes more pronounced as u
increases. Any other formulation of E, with this property would lead to results
which are aualitativelv the same as those we shall describe in this paper.
Consequently, in the absence of more specific biological information, the
formulation of E, given in Eq. (1) seems the most reasonable choice.

We extend the model in Ref. [6] so as to incorporate the continyum of
possible predator emigration rates given by Eq. (1). As noted, the model en-
visions a finite collection (say N) of host plant patches, each of which may be
inhabited by a prey species that views an individual patch as a continuum
through which it diffuses and reproduces. The habitat patches are idealized as
squares, with the nth patch having side length £,. The prey density on the nth
patch is denoted by v,(x,y,t) where (x,y) indicates patch location and ¢ time.
On the patches and in the air surrounding them is a population (of total size C)
of a predator species that can move freely from one patch to another in search
of the prey. For each fixed x € [0, 1], the model is given by a coupled system of
2N equations, one for the prey population density and one for the predator
population number on each of the N patches. The system is coupled by the
immigration and emigration of the predators among the host plant patches,
and N of the equations track this movement with P,(¢) denoting the number of '
predators on the nth patch at time ¢. Immigration to the nth patch is from the
airborne predators and is proportional to patch area. Emigration from the nth
patch is given by Eq. (1). Reflecting our concentration on differences in
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emigration from habitat patches, the constant of proportionality for immi-
gration, denoted i, is assumed independent of p. To account for prey popu-
lation dynamics and dispersal on each patch and for predation, the
- immigration-emigration equations for the predators are augmented by a dif-
fusive logistic equation with predation for each of the N patches. The pa-
rameters in these equations are common ones in diffusive logistic models with
predation, namely the diffusivity of the prey (D), intrinsic growth rate of the
prey at low densities (r), prey carrying capacity (K), and predation rate (c).
Explicitly, the model is given by

dp, e /(i \"
_—z<c ZP/«> ’2 /<—ﬁ>

Ov, o%v, 0%v, Uy P,
”aT*D<ax2+aZ> +r(1= ) 6(42)""

for 0<x<¥, O<y<E,,,
Uy(x,0,8) =0 forx=0, £4,,y=0,4,, n=1,...,N. (2)

Note that the total prey population ¥, in the top equatlons is the integral of the
prey density v, over the nth patch; i.e. ¥,(¢) fo" fo" Un(x,, ) dxdy.

A fundamental premise of [6], as noted in Section 1, is that predator dis-
persal occurs on a sufficiently accelerated time scale to justify assuming that the
predator population on any patch effectively reaches equilibrium almost im-
mediately. As a consequence, following along lines used by MacArthur ([8,9])
we assume the P, adjust to the ¥, so quickly that the predator populations stay
at whatever equilibrium would be determined by the ¥,. The top equations in
(2) then yield the “pseudoequilibrium™ (Pf,...,P}) where

P* — ZC£3(I/;’/ )”

p ©)
13 e BH/B)" + e,
so that the long term dynamics of Eq. (3) are determmed by
ov, v, v, Un icC(V, /)" t,v,
—=D| x5+ | +r{l—=)v,— e
o <ax2 9 2> ( K) (i B/ 8) +e,)
for0<x<¥, O<y<d¥, n=1,...,N,
v, =0 forx=0,4,;y=0,4, ‘ 4)

. The system (4) is coupled by the dependence of the predator pseudoequilibrium
(Pf,...,P}) onall of the habitat patches. When u = 0, the effect of predation is

to surpress the intrinsic growth rate of the prey (see Ref. [6; section 3.5]). As a
- result, the prey density may equilibrate to zero on some patches, and some
patches with no prey may still contain predators. However, when u > 0, the
coupling is through the non-local terms ¥, and in essence the carrying capac-
ities of the prey densities are affected. For u > 0, predators will only be found
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in patches that contain prey. The system is quasimonotone (i.e. cooperative)
for € (0,1) just as in the case u =1, and its asymptotic behavior is quali-
tatively the same for any '€ (0, 1]. (A coupled system of differential equations
7 = () is said to be quasimonotone, i.e. cooperative, if 9f;/0y; > 0 for i # j.
The key property of such systems is that they are order preserving. These ideas
extend to reaction—diffusion systems.) Namely, Eq. (4) has a unique globally
attracting equilibrium (v%*(g), ..., vi (1)) with v2*(u) > 0 on (0,4,) x (0,£,) if
/D > 2r*/£2 and v* (1) = 0 if »/D < 2n*/£2. The models developed in [6] and
used here assume that the population dynamics of the prey (in the absence of
predators) are logistic. If that assumption is changed, for example by intro-
ducing an Allee effect, then the system (4) may not have a unique attracting
equilibrium. In such cases the spatial distribution of the prey might be more
complicated or might depend on ‘historical’ factors such as how many prey
originally colonized a patch. It is likely that such changes could affect the

relative effectiveness of predator foraging strategies, but we will not pursue this
point further in the present article.

Our aim now is to formulate an expression for the net per capita energy
uptake &, for the p strain of predators We compute &, in terms of the
available prey. In order that this expression be simple enough for us readily to
compare energy uptakes for different strains of predators, we make (for the

remainder of this article) the additional assumption that

£, =1 (5)
forn=1...., N. In this case, the components of the globally attracting equi-
librium to (4) are all equal, so that v**(u) = v**(u), where v**(u) > 0 satisfies

2, o2 ; 2\
0= D(a +_6_v>+r(1_£)v_ icC(V [6) v

a9y K)" T iNB(V[BY +e,
forO<x<{, O<y</{
v=0 forx=0,4, y=0,~L (6)
The predation term in Eq. (6) becomes
icCoNB(V /84)! v
WETIE T e &

when the number of patches is held fixed but the total predator population C is
assumed to be proportional to the total habitat area (i.e. C = CoN#?) and be-
comes »

icCoNL(V [ )y ®)
INB(V /2 + e, ‘
when each patch size is held fixed but the total predator population C is as-

sumed to be proportional to the total number of patches (i.e. C = CoN). We
introduce these forms of predation terms because we will later examine how the
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predictions of our models are affected as the size or number of patches become
large. It turns out that the results depend on how C is scaled.

We shall denote the net per capita energy uptake for the u strain of pre-
dators by &, and we have

&, = { Total resource consumption
— total energy cost of flying
— total energy cost of activity within a patch}
/ total number of predators

- { ny:] chu(Va/8) - 5(C ~ Zﬁl:l P") - ')’( ZL P")} 9)
= G ,

where & and y represent per capita energy costs of flying and patch activity,
respectively. Unless otherwise noted, we shall assume throughout this article
that '

o>, | . (10)

reflecting the assumption that flying requires more energy than foraging within
a patch. ‘

An assumption implicit in the formulation of (9) is that all patches under
consideration support prey populations. By (1), such an assumption is com-~
pletely general if y > 0. However, if the predator’s emigration rate is based
solely upon the geometric characteristics of potential habitat patches (i.e.,
p = 0), it may well be possible that the number of host plant patches (M)
exceeds the number occupied by the prey (N). As we shall see, the presence of
patches free of prey can change the predictions of the model. We shall treat this
case separately later in this section, but for now let us return to Eq. (9). Our
aim is to use net per capita energy uptake to compare the foraging strategy of a
resident population of one predator strain with that of a second, potentially
invading strain, which is introduced in small numbers. We make this com-
parison at a point at which the resident predator-prey system has reached
equilibrium. Assumption (5) tells us that the equilibrium prey population is the
same on each patch. So we set V, = V** = V where V** = foe foﬂ v** dxdy and we
have by (3) that

_ieNEW /B ([0 o (3= )iNE/e)

LTOANBV ) + e, INB(V /2 + e,
iNG 2
= WE T e ryEy )+ =)=
NG )

since E, = (e,/£)/(V /)" by Eq. (1).
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When p = 0 and there are M — N host plant patches unoccupied by prey
formula (9) must be adapted to

g, — {1 P (h/8) = 6(6; St P) — (Sl P} (12)

In this case, we have
ice
v iM€3+€Q (13)
forn =1,...,M by assumption (5). Using Eq. (13) and the fact that ¥, = V for
n=1,...,N, Eq. (12) simplifies to

. 3 2 . 3
=z'cNZ (V/£)+(5—y), iM¢ s

iMe -+ E()Eo iMe + ZEO

By virtue of the underlying assumption of the models that predator strains
‘track’ the mean prey density, the formulations of net per capita energy uptake
given in Eq. (11) and Eq. (14) do not depend upon whether the predator strain
in question is the resident or the invader. In particular, there is no explicit
dependence in the formulas on the total population size of either strain of
predator. However, it is important to note that the value of ¥/£ is the equi-
librium value determined by the interaction of the prey with the resident strain
of predator. Consequently, the size C of the population of the resident predator
“does affect which strain of predator has the higher net per capita energy uptake,
while the number of introduced predators does not.

Qince the cize nf the resident nredator nonnlation affects the relative effec-
tiveness of different foraging strategies, a complete evolutionary treatment of
our model system would require a model for the year-to-year population dy-
namics of the predators. We shall not attempt to give a full evolutionary
treatment in the present paper. Our goal is more modest, namely to show how
the spatial aspects of foraging strategies can be described and compared.
However, we will now give a brief discussion of how population models could
be constructed. Recall that our models are based on a system where the pre-
dators reproduce only once per year, so that the resident predator population
(denoted by C) is assumed to be constant within any given year. Suppose that
only a single strain of predators is present and denote the population in year T
as Cr. Since the predators reproduce only once per year, it is appropriate to use
a discrete time model for Cy. If reproductive success depends only on resource
uptake, the model should take the form \

Cry1 = Crf(E(V(Cr)),

where £ is an increasing function of the resource uptake &. Recall that V(C) is
a decreasing function of C and & is an increasing function of V. If f(&(¥(0)) >
1 then the predator population will increase at low densities and can be ex-
pected to persist. If £(€(V(C)) < 1 for C large then the model will typically

& (14)
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have a unique and stable equilibrium C* such that f(&(¥(C*)) = 1. If there are
two strains of predators the situation becomes more complicated. To give a full
treatment of a situation where there were two predator populations C; and C,
* using different strategies we would need to return to the modeling of [6] to
determine an average prey density ¥ (Cy, C;). The predator population model
~ would then take the form

Cyr+1y = Cipfil€1(V(Cir, Cor))),

Corrr) = Corfa(E2(V (Cir, Cor))).
However, even in this case, it should be possible to say something about co-
existence from the viewpoint of permanence or uniform persistence (see [3,4])
strictly on the basis of single-strain models. Permanence provides a rigorous
theoretical formulation of the idea that ‘invasibility implies coexistence’, and
the question of invasibility can be addressed via single species models. If only
C) is present it should satisfy a single-strain population model

Cirsny = Ciofi(61(V(Ci1,0)));
similarly, if only C, is present then

Cotrny = Corf2(62(V (0, Car)))-
If these models have unique equilibria C}, C; then the first strain can invade
when the second is resident provided f(&(¥ (0, C3)) > 1. Similarly, the second
strain could invade when the first is resident if f5(&,(V(Ct,0))) > 1. The point
of this discussion is that Cf, C3, ¥(Cy,0) and ¥ (0, C3) could all be determined
in principle on the basis of single-strain models, which in turn could be for-
mulated directly from the models in [6].

3. Energy comparisons

Let us now assume that for both strains the net per capita energy uptake is
given by Eq. (11). Such is the case if both y, and p, are positive or if one of I
and p, is 0 but all host plant patches under consideration are occupied by prey.
By (10), it follows from the form of &, and &,, in Eq. (11) that

Epy > &y, = E, <E,, (15)

where E, and E,, are given by Eq. (1).
Now consider E,, and E,,. Notice that
By _en v/ 2y h ' 16
= ey, (16)
If 1y # w,, we see from Eq. (16) that E,, /|E,, is a strictly monotonic function of
V/€.If py # p, there is a unique numerical value of ¥/¢* for which E,, = E,,
namely V/ = (e, /eu])l/ (=) We express this value in terms of the prey
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carrying capacity K. (It follows from the maximum principle that
0< ¥/ <K.) We thus define a = a(uy, i) by

E, =E,, if V/# =K, (17)

so that o = [(e,,/e,)"/**)]/K. 1t follows from Egs. (16) and (17) that if
#‘1 > s
E, <E,, < V/{>dk. (18)

Thus, if « > 1, the bound on the average prey density implies that &, > &,
independent of ¥/£2. However, if « < 1, the value of ¥'/¢> determines which of
&,, and &, is the larger. Consequently, in this case, we need to examine the
dependence on ¥ /£2 more closely, a task we undertake in the next section.

If now p, = 0 and there are M — N host plant patches unoccupied by prey,
the net per capita energy uptake &,, is given by (11) while &, is given by (14), so
that ‘

iNg 2 iMe
=g v im ) T T
iNg? ) iNg
¢ =worm, ) T we i, (6=7)=0 (19)

Deciding which of & and &,, is larger is no longer tantamount to deciding
which of Ey and E,,, is smaller. For example, for the sake of specificity, suppose
E, = E, (which implies V/# = oK = ((e,,)/(e0))"/"*). Then, comparing the
terms in (4) for & and &,,,

ING N3

B 2y oMV 2
gz 125, 6 < e ams © V1 (20)
while
iMe iNG
TN G 7w @)

so long as Eq. (10) holds (ie. § > y). In Eq. (20), having M > N confers a
disadvantage to the strain of predator which incorporates only the geometry of
the host plant patches into its emigration regime, as it is better to forage where
there is a food supply. However, in Eq. (21), having M > N confers an ad-
vantage to the O strain as long as there is a higher energy cost associated with
flying than with patch activity and movement. Which effect wins out depends
on the disparity between M and N and the relative sizes of ¢ and & —y. For
instance, if M = N + 1, ¢ is relatively large and 6 — y is relatively small, we
expect &,, > &. Indeed, if Ey continues to equal E,, but now é = y (so there is
no additional energy cost to flying), &, > &, for any M > N and ¢ > 0. If
w = 1, (19) can be rewritten ‘



R.S. Cantrell, C. Cosner | Mathematical Biosciences 160 (1999) 25—46 37
__icNBaK — (ey + yiM )z
2(iM B + eg) ’
& = icN€3ocK'— YiNz — ez’ ,
Z(IN£? + egz)
. where aK = (e;)/(eo) and z = (aK)/(V /£*). Then & > &, is equivalent to
(icNBaK — yiN8z — Seo2®) (iME + &)
> (icNPoK — [Seq + yiMP1z) (iNE + egz),
which in turn simplifies to
(8 — y)ieoM 2 + ieeNE[coK — & + y]z + iNcoK P (i(N — M) — &)
<0. : (23)

Since N < M, the last term on the left-hand side of Eq. (23) is negative, so that
the corresponding quadratic equation in z has one positive root z* and one
negative root z~, as long as § > y. It follows that in this case,

&o

(22)

&> 6= 0«

aK +
Ve <zt (24)
If N =M, Eq. (23) reduces to

(6~ )2 + (caK — 6 + 7)z — cak < 0
and it can be seen by inspection that z+ = 1, so that Eq. (24) coincides with
Eq. (18) for y; =1 and y, = 0.

4. Dependence on V /¢

We saw in the preceding section that in the model system described by
Eq. (2) and Eq. (5) if all host plant patches may be viewed as being occupied by
prey (effectively that M = N) and an exotic strain of predator is introduced into
a resident predator—prey system that has reached equilibrium, then whether the
resident or the introduced variety has a higher net per capita energy uptake
depends solely on the average prey density ¥/¢? at the equilibrium. In par-
ticular, we require knowledge of the value of ¥/#2 in relation to aK, where o =
a(py, 4p) is the proportion of K at which the emigration rates E,, and E,, for
the two predator strains are equal. In this section, we shall examine the value of
" V/£* under various assumptions about patch size, number of patches and
number of predators. In the case M = N it turns out that whether ¥ /#* exceeds
- oK or not depends only on the number C of resident predators and is inde-
pendent of which strain of predator is resident. This fact has significant ram-
ifications as to the most effective strategy for a resident strain of predator. Our
result here is as follows.
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Theorem 4.1. Suppose that M = N and suppose that /D > 2m* /. If 1, > 1,
and E,, = E,, when V [ = oK, then

I/;ln/ez < I/;iz/e2 g V;ln/ez > oK.

Proof: Having E, > E,, when V/£* = oK requires that e, = e, (k)™
Consequently, if v, denotes the solution to Eq. (6) with = y,, we have v, >
0 and that

2 2 : 2\H2 2
(48 ¢ - et o, - %
Y [ icCl(V, /Y icCO(V,, /%) }

W\ NE [BY T ey INE (T [B + e, (KT
e icCly, [(aR)TH (7, /) — (V[ £)"]
= [iA’-g3(K¢, I/gz)#x +e#l][iNf3(Kil,/£2)“2 +‘-"m (,xk')#z-ul]

; (25)

It is easy to see that the sign of the right-hand side of Eq. (25) depends only on
the sign of

(“K>llz‘#1 (V;l) /ZZ}M - (V;ll /£2)/12
or equivalently only on the sign of

- (g‘%) (26)

. P . (TR 1 IR AN I T ' ANEPI | e m wvela naa
OLUCE L) .~ Moy, \&U) 1D PUDILYL WHLLL (W /P f v ] ™S 2y ey LLFeTer

(aK)/ (¥, /£?) = 1, and negative when (aK)/(¥,,/£*) > 1.

It follows that v, is a (strict) subsolution for (6) with =y, if and only if
V., /#* > oK. Moreover, the solution of Eq. (6) is unique and any sufficiently
large constant is a super solution. Consequently, if ¥, /#* > oK, then vy, > v,
on (0,4) x (0,£) by the method of sub- and super solutions. So ¥, /& > V,, /£*.
On the other hand, if ¥,,/&* > ¥, /£* and ¥,, /£* < oK, the fact that v, is then
an upper solution for Eq. (6) with u =y, leads to the contradiction that
V,, /8 < V,, /¢ Hence if ¥,,/0* >V, /2, Vo /8 >oK. O

We may use Theorem 4.1 to identify appropriate strategies for different
strains of resident predators. To this end we suppose all patches are occupied
with prey (M = N and r/D is large enough) and that p, > u,. Let us call the
strain of predator associated with g, Strain 1 and that associated with p, Strain
2. Suppose that Strain 2 is the resident and that Strain 1 has the higher net per
capita energy uptake. Then it must be the case that &,, > &, which by Eq. (15)
is equivalent to E, < E,,. Since u, > i, E, < E,, is equivalent by (18) to
¥,/ > oK. In this case ¥, /& > oK also. Otherwise ¥,,/¢* < «K, and Theo-
rem 4.1 implies ¥, /& < V,, /#* < oK, a contradiction. So if ¥,,/¢* > eK, so is
V,,/¢*. Hence if Strain 1 is the resident predator, E,, < E,, so that &, > &,
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and Strain 1 still attains the higher net per capita energy. The reverse holds as
well; that is, if in the equilibrivm system with Strain 1 as resident Strain 2
attains the higher net per capita energy then Strain 2 would attain the higher
net per capita energy as resident. What is suggested is that the strain with the
more pronounced tendency to aggregate in response to average prey density
(i-e. the one with the larger x) should aim as resident to keep the average prey
density above the point at which its emigration rate matches that of the in-
troduced predator strain having a less pronounced tendency to aggregate in
response to average prey density, whereas the strain with the less pronounced
tendency to aggregate in response to average prey density (i.e. the one with the
smaller p) should aim as resident to keep the average prey density below the
point at which its emigration rate matches that of an invader having a more
pronounced tendency to aggregate in response to average prey density.

We now examine the value of ¥/ at equilibrium when all habitat patches
are assumed to be occupied by prey (i.e. M = N) under various assumptions on
the size and number of patches and on the total number of resident predators.
Theorem 4.1 allows us to assume that p, > 0, and as a result, to adapt the
results of section 3.8 of [6] to determine the value of ¥/£? in various cases.
Consequently, we omit proofs and refer the interested reader to [6]. In that
which follows, we assume o € (0, 1).

If the total number of predators is a fixed constant C, the effect of predation
is marginalized if either the size of a patch becomes large (¢ — o) or the
number of patches becomes large (N — o0). Hence limy.,V /¢ or
limy_., ¥ /£? is K in this case. As a result, if the number of patches or the size of
patches becomes large, we should expect the strain of predators with the more
pronounced tendency to aggregate in response to average prey density (i.e., the
strain with the higher u) to have the higher net per capita energy uptake,
whether it is the resident in a predator—prey system at equilibrium or the in-
troduced strain. '

If the total number of predators is proportional to total habitat area (i.e.
C = CyN¢*) and the size of patches become large (£ — co), /£ tends to (1 —
(cCo)/(r))K when cCy < r and 0 if ¢Cy > r. (This follows from Egs. (6) and
(7). If 1 — (cCo)/(r) > a, the more aggregative strain of predator always has
the higher net per capita energy uptake, whereas if 1 — (cCy)/(r) < «, the sit-
uation is reversed and the strain with the less pronounced tendency to aggre-
gate in response to average prey density has the higher net per capita energy
uptake. Notice that for fixed values of Cy,» and o, 1 — (cCy)/(r) > o occurs if ¢
is smaller-and 1 — (¢Cy)/(r) < o when c is larger. This observation is consistent
with thé note regrading strategies for resident predator strains which follows
Theorem 4.1.

When the total number of predators is proportional to the number of
patches (i.e. C = CoN as in Eq. (8)) and the number of patches becomes large
(N — o0), the explicit dependence of the predation term (8) on the size of the
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patch (i.e. £) remains. As a consequence, limy_.c ¥V /£* depends on the solution
to an elliptic partial differential equation. Specifically,

2
wie ifrs 22D o
lim V /£ = e e 27)
Neoo . 27*D  ¢Cy ,
0 ir<=p it
where W = f(f foﬂ w(x,y)dxdy and w is the unique positive solution to
?w o C .
-D<5x—’2“+aj;> = <r~c—€2—o>w—%w2 in (0,£) x (0,2) (28)

w=0 on 98((0,£) x (0,£))

when one exists (i.e. when » > (272D)/(£2) + (cCo)/(€%)). It is evident from
inspection that (8) is an increasing function of N. Consequently, the conver-
gence to a limit in Eq. (27) is decreasing in N if the remaining parameters in the
Eq. (6) are held fixed. Hence if W/#* > «K for some fixed choice of , ¢, Co and
L, V|2 >aK regardless of the number of host plant patches, and the strain of
predators with the more pronounced tendency to aggregate in response to
average prey density has the higher net per capita energy uptake. On the other
hand, if W /£ < oK for a fixed selection of r,c, Cy and £, the strain of predators
with the less pronounced tendency to aggregate in response to average prey
density can be expected to have the higher net per capita energy uptake if there
are a large number of host plant patches. Notice also that w (and hence W/ 2)
increases with » and decreases with ¢ or C;, again consistent with our earlier
findings

As the size of the host plant patches decreases, so does the equilibrium
density of the prey population. Indeed, v =0 (and hence v/ = 0) once
~ £<+/(2nD)/(r). Moreover, such is the case even without predation pressure on
the prey population. In this case, any strain of predator would experience a net
energy loss and it is not meaningful to compare net per capita energy uptakes.
As £ increases just past the threshold value of +/(2nD)/(r), ¥ /£ will neces-
sarily be small and net per capita energy uptakes will remain negative. In fact,
it is easy to see from Eq. (11) that &, < 0 so long as

v/ <y/e.

If y/c < oK, however, it is reasonable to expect there to be a range of sizes for
host plant patches for which a strain of predators with a less pronounced
tendency to aggregate in response to average prey density has a positive net per
capita energy uptake which is higher than that of a more aggregative strain.

Let us now consider the case where there are host plant patches without prey
and one of the predator strains emigrates from host plant patches solely on the
basis of geometric cues (i.e. M > N and p, > p, = 0). In this situation there is,
as noted in Section 4, a trade-off between the detrimental effect of a non-ag-
gregative predator strain’s foraging on empty patches and the higher energy
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cost associated with flying as opposed to that associated with patch activity and
movement. This trade off may sometimes lead to a qualitatively different
outcome in the interaction of an aggregative predator strain and a non-ag-
gregative predator strain. Namely, whichever strain is introduced into the
equilibrium system has the higher net per capita energy uptake. In order to
focus on this possibility, we make an additional assumption for the remainder
of the section designed to simplify the underlying mathematical analysis and
the corresponding biological exposition. Namely, we shall assume that y; = 1;
. 1.e., that the predator strain with the tendency to aggregate in response to
average prey density emigrates from host plant patches at a rate inversely
proportional to average prey density.

There is an analogue to Theorem 4.1 for the case M > N, y; = 1 and y, = 0.
Its proof mimics that of Theorem 4.1, so we shall merely state it and leave it to
the interested reader to check the proof.

Theorem 4.2. Suppose that M > N and suppose that r/D > (27?)/(€*). If E; =
Eo when V |2 = oK, then
1
oK.
1+ (i) / (e0) (M -N)>

V/E < W/ = V] > (

Remark. Observe that E, = E, when V/£* = aK requires that e, = eyoX.

We recall from (24) that the net per capita energy uptake for the y, strain of
predator (namely &) exceeds that for the p, strain (namely &) precisely when
the equilibrium value of the average prey density exceeds oK /z*, where z*
denotes the positive root of the quadratic expression on the left hand side of
(23), so we have

51>(504=)V/Z2>%§ . (29)

while
oK
(1+ (M —N))/(e0))
We noted in Section 3 that if M = N, z+ = 1 and it is evident that 1 + (i®*(M —
N))/(eo) =1 if M=N. When M >N, it is not difficult to show that
zt <1+ (il*(M — N))/(e), and so if M > N,
oK oK
< —. 31
T+ G- N)e)) = ey
If we now examine Egs. (29) and (31), there is a contrast with the situation

when M =N. If M =N, zt =1 =1+ (il’(M — N))/(eo), and both of ¥, /¢
and ¥,,/¢* are less than threshold value aX or both exceed aK. This fact

W/t >W¢ = e (30)
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guarantees the conclusion that if the equilibrium system determined by a first
strain yields a higher net per capita energy uptake for the second strain, then
the second strain would have a higher net per capita energy uptake if it de-
termined the prey equilibrium. If M > N and one of ¥ /¢* and V; /£ is less than
(@K)/((1 + (i(M — N))/(eo))), then the other is also. In this case, ¥ /£ <

(0K)/(z*) for the prey equilibrium determined by the resident predator, -

whether it is the aggregative or non-aggregative strain that is the resident.
Consequently, & > &, whether the non-aggregative strain is the initial resi-
dent or the introduced strain. Similarly, Vj/¢* > (aK)/(z") implies
Vi > (aK)/(1+ (i*(M — N))/(eo)), hence %/£2 > Vi/E > (eK)/(z"), and
the aggregative strain holds the advantage as resident or the introduced strain.
But if ¥/ > (eK)/(z*), then Wi/ > (aK)/(1+ (i’(M —N))/(eo)) is as
much as may be deduced from Eq. (30). Consequently, we cannot immediately
rule out the possibility that

¥ K

. 17
7736 ¥o

<—<'ZT<ﬁ.

(1+i£3(M—N)> 7

€o

(32)

If Eq. (32) obtaips and the aggregative predator strain determines the prey
equilibrium, ¥} /£ < («K)/(z*) means that & > &, whereas if Eq. (32) obtains
and the non-aggregative strain determines the prey equilibrium, F/ 2>
(aK)/(z") means that &; > &. As a consequence, we would expect that the
system displays mutual invasibility, and thus we would expect a prediction of
cnevictence fram nannlation madels hased on these strategies for resource
uptake.

The question remains as to whether the model admits Eq. (32) as a possi-
bility. We assert that the answer is yes. To see that such is the case, assume
initially that M = N and that ¥, /£ > 0. Choose a € (0, 1] so that «K = V; /2. If
we now choose ey = e; /oK, it follows that V/£* = aK also. When M =N,
7+ =1. Hence for M =N, ok = (aK)/(1 + [(i’(M — N))/e))] = (N)/(£*) =
(aK)/(z") = (¥o)/(¢*). Now let M increase so that M > N. The behavior of the
predator strain which aggregates in response to average prey density does not
change in this event so that V] /¢ retains its initial value. However, it is clear
from inspection that now (ak)/(1 + [(i8*(M — N))/eo)) < (V1)/£*. Theorem 4.2
now implies (¥1)/(¢2) < (V)/(£*). Consequently, let us view M > N and o, ey
and e, as fixed as above, and examine (¢K)/(z*). For M > N the value of z*
depends on the difference & — y, whereas ¥} and ¥ do not. (Recall that § is the
constant of proportionality associated with the energy cost of flying and y the
constant of proportionality associated with the energy cost of patch activity
and movement.) As a result, we can adjust § — y without changing the values of
(@K)/(1 + [(i*(M — N))/eo)), (V1)/(¢*) and (Vo)/(€%). Tt is a straightforward
exercise in calculus to show that lims_,g+zt =1+ (i*(M —N))/(eo) and
that lims_,_+e0zt = (N)/(M). As a result, as the difference 6 —y varies from
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0 to +4oo, (aK)/(z*) takes on every value in the interval ((aK)/(1+
(i (M — N))/eqd)), (M)/(N)(aK)). It follows that there is a range of values of
0 — y for which Eq. (32) holds. It is also of interest to note that z*+ = 1 precisely
when 6 —y = (il’NcaK)/(eg) = (i’Nce,)/(€}), so that (aK)/(z*) > aK = V; /2
when 6 —y > (il*NcoK)/(ey).

One possible mechanism for the occurrence of Eq. (32) is as follows. If the
non-aggregative strain of predator establishes the prey equilibrium,. having
M > N pulls residents to empty patches, which allows a higher prey density on
the non-empty patches, which is an advantage to the aggregative predator
strain. On the other hand, if 6 — y is large enough, it may be better to be on an
empty patch than it is to fly, which offers an advantage to the non-aggregative
strain.

5. Conclusions

We have compared certain foraging strategies for predators that seek prey in
an environment consisting of patches of plants which might or might not
harbor prey. We have specifically considered a situation where the strategies
used by different strains of predators differ in the extent to which predators
aggregate in response to prey density. In our models the mechanism for pre-
dator aggregation is a version of area restricted search in which the emigration
rate of predators from a patch of plants is inversely proportional to a power p
of the average prey density on the patch. Larger values of p correspond -to
greater sensitivity to prey density. If u = 0 the predators ignore prey density
-and forage solely on the basis of the geometry of the patches of plants. We
compared strategies by comparing the net rates of energy uptake of different
strains of predators in scenarios where one strain was established as a resident
and the other was introduced in small numbers. The choice of these scenarios
was suggested by John Maynard Smith’s definition (see [2]) of evolutionarily
stable strategies as those which cannot be invaded by any competing strategy.
Since our foraging models do not include predator population dynamics we
used net energy uptake as a surrogate (see [5]).

If the emigration rate for the predator strain is inversely proportional to the
zeroth power of average prey density, the strain employs only geometric cues in
emigration and thus the strain can be expected to be present on prey habitat
patches devoid of prey if there are any such patches. All strains which aggre-
gate in response to average prey density, however, can be expected to be
present only on patches occupied by prey. This behavioral difference in pre-
dator strains plays an important role in analyzing the model (2). Indeed, the
results of our analysis are well described by considering two cases: (1) all
habitat patches are occupied by prey and/or both the resident and invading
predator strains tend to aggregate in response to average prey density; or (ii)
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there are host plant patches which are unoccupied by prey and either the
resident or invading predator strain emigrates by using geometric cues alone.

In the first case, we may assume with no loss in generality that the number
M of host plant patches is the same as the number N of host plant patches
occupied by the prey species. There is a unique threshold value of average
prey density at which the emigration rates from host plant patches of both the
resident and introduced predator strains are the same. We express this
threshold as a multiple aK of the carrying capacity K of the prey. If average
prey density is above oK, the strain with the more pronounced tendency to
aggregate in response to average prey density emigrates from host plant
patches more slowly than the other strain; the situation is reversed when
average prey density is less than oX. Which strain achieves a higher net per
capita energy uptake depends only on whether the average prey density at
equilibrium exceeds the threshold «X or not, and moreover, whether or not
the average prey density at equilibrium exceeds oK depends on the predator
population C but is independent of which strain is resident and hence deter-
mines the equilibrium prey density (Theorem 4.1). If the average prey density
at equilibrium exceeds oK, the strain with the more pronounced tendency to
aggregate in response to average prey density has the advantage of a higher
net per capita energy uptake either as resident or as the introduced strain. The
situation is precisely reversed if the average prey density at equilibrium lies
below the threshold «X. The maximum principle for elliptic partial differential
equations guarantees that the average prey density at equilibrium is less than
ar aqmal tn K Concequently one strategy in this scenario can be superior to a
second strategy at all levels of equilibrium prey density only in the case a > 1.
In this case, the more aggregative strain always emigrates from host plant
patches faster and consequently has a lower net per capita energy uptake. On
the other hand, if & < 1 and a predator strain has the advantage as resident, it
has the advantage as the introduced strain also. Moreover, since a higher
average prey density at equilibrium favors the more aggregative strain, a lower
predation rate ¢ favors the more aggregative strain, all other factors being
equal.

If there are unoccupied host plant patches (so that M > N) and one of the
strains of predator emigrates from host plant patches using geometric cues
alone, competing effects come into play. Foraging on empty patches lowers the
total resource consumption for a non-aggregative species. However, this det-
rimental effect may be offset if the disparity between the energy cost of flying
and the energy cost of activity on a patch is sufficiently large to proffer an
advantage to a non-aggregative strain of predator. These competing effects are
reflected in the complexities added to the underlying mathematics of the model ‘
(2) when M > N. Just as in the case when M =N, there is a unique threshold
value aK such that the aggregative strain emigrates from host plant patches
more slowly than a non-aggregative strain precisely if the average prey density
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at equilibrium exceeds «X. In the case M = N, if one predator strain determines
an equilibrium average prey density greater or less than aX, so does the other.
Moreover, if M = N, whether the average prey density at equilibrium exceeds
oK or not determines which predator strain achieves the higher net per capita
energy uptake. If M > N, there are again thresholds 7; and 75 in terms of
average prey density at equilibrium so that if one strain determines an equi-
librium average prey density above or below T; so does the other strain and so
that whether the equilibrium average prey density exceeds 7, or not determines
how the strategies compare. However, if M > N, these thresholds 7; and 75 no
longer necessarily equal oK or each other. In general, T} < T,. When the ag-
gregative strain emigrates from host plant patches at a rate inversely propor-
tional to average prey density, 7} = (aK)/(1 + (i*(M — N))/(eo)) and T; = %,
where z* is the positive root of the quadratic of (3.9). The value of z+ depends
on the disparity in energy costs associated with flying and with patch activity as
well as M — N and the parameters of (2).

If M > N and the equilibrium average prey density is less than T, the pre-
dator strain which emigrates in response to geometric cues alone has the ad-
vantage either as resident or as the introduced strain. Consequently, low
equilibrium average prey densities favor the non-aggregative predator strain
just as in the case when M = N. If the aggregative strain of predator is the
initial resident and the equilibrium average prey density is high enough (i.e.
exceeds T), the aggregative strain has a higher net per capita energy uptake
than the non-aggregative strain. However, if the non-aggregative strain is the
initial resident and determines an equilibrium for Eq. (2) wherein the average
prey density exceeds 7>, we can only conclude that the aggregative strain would
determine an average prey density at equilibrium exceeding 7T;. Indéed, we
demonstrate that T} < V,/? < T, < V;/#* sometimes occurs in the model if the
disparity in energy costs for flying and patch activity is high enough, where
V./#? and ¥,/ are the average densities at equilibriums determined by the
aggregative and non-aggregative strain of predator, respectively. In this situ-
ation the introduced strain has an advantage over the resident, independent of
which strain is using which strategy. This suggests that in population dy-
namical models based on these strategies for resource uptake the two strains
would be likely to display mutual invasibility, which would usually imply co-
existence.
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